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Global characteristics of jet impact 
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This paper is concerned with the impact of a jet of arbitrary cross-section onto a rigid 
plane. At the initial stage of the impact the liquid motion is described within the 
framework of the acoustic approximation. Behind the shock front which is generated 
under the impact, the pressure distribution is calculated analytically for an arbitrary 
cross-section of the jet. It is shown that a quarter of the total impact energy transfers 
into the internal energy of the compressed liquid. The focusing of the compression and 
relief waves in the axisymmetrical case is discussed. 

1. Introduction 
This paper deals with the problem of the unsteady liquid flow caused by an impact 

on its boundary. Initially the liquid is at rest and occupies a cylindrical, half-infinite 
domain of arbitrary cross-section Q. The side surface of the cylinder corresponds to the 
undisturbed position of the free liquid boundary, (x, y )  E aQ, z > 0. Below, the liquid 
region is bounded by a rigid undeformable plate z = 0 (figure 1 a). At some moment of 
time, which is taken as the initial one ( t  = 0), the rigid plate starts to move up at a 
constant velocity V. A shock wave and expansion waves are generated at the impact 
moment (figure l b ) .  

We shall determine the pressure distribution p ( x ,  y ,  z, t )  behind the shock front, the 
hydrodynamic force on the plane F(t), the total impulse I, and the internal energy E,(t) 
of the disturbed liquid under the following assumptions: (i) the plate is solid and 
undeformable; (ii) the liquid is ideal and compressible; (iii) the Mach number 
M = V/co, where co is the sound velocity in the liquid at rest, is much less than unity; 
and (iv) external mass forces and surface tension are absent. 

This problem is of interest for some jet technologies, jet-printer performance, and 
also for cavitation erosion. It is known that the collapse of a bubble adjacent to a rigid 
surface leads to the formation of a microjet which hits the surface at a high velocity. 
The jet impingement on the surface is one of the causes of cavitation damage. 

At the initial stage when the shock wave generated by the impact is not far from the 
plate, the compressibility of the liquid is of major significance. The liquid flow is 
described within the framework of the acoustic approximation provided that M 4 1. 
This approximation is valid for impact speeds well below the medium’s acoustic 
velocity and for times in which the deformations are small compared to the overall 
characteristic length. More details on the justification of the acoustic approach are 
given in Appendix A. 

Dimensionless variables are used below. They are chosen so that both the sound 
velocity and the impact velocity are equal to unity, and the diameter of the jet cross- 
section is equal to 2. Then the scale of the pressure is the ‘water hammer’ pressure 
po co V, the scale of the liquid velocity is the impact velocity V, the length scale is half 
the diameter of the jet cross-section R, the time scale is the ratio R/co, po is the density 
of the resting liquid. 
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FIGURE 1 .  Impact of a plate on an half-infinite liquid cylinder. (a) Initially, liquid is at rest and 
occupies a cylinder z > 0 of arbitrary cross-section. The side boundary of the cylinder is free. (b-d) 
The wave pattern at the initial stage of the impact (plane case): (b) SW, shock wave; RW, relief wave 
produced at the impact moment. (c) Interaction of the relief waves. (d) CW, compression wave 
produced by the relief wave reflection in the free surface. 

Both the plane and axisymmetrical problems are considered in detail. General 
formulae are presented for the impact of a jet of arbitrary cross-section. The present 
study is focused on the global characteristics of the process. In order to give a global 
description of the impact, a technique which does not account for details of the flow 
is used. This is a strength of the approach because the results of practical interest may 
be obtained and analysed in a quite simple way. On the other hand, this is also a 
weakness because the approach does not give much insight into the fluid mechanical 
aspects of the problem. For example, the pressure distribution inside a jet of arbitrary 
cross-section is found in this paper within the framework of the acoustic 
approximation. However, the corresponding formulae in the forms presented cannot 
be directly used for numerical calculations and further work is required. In particular, 
we cannot now compare the results given by the acoustic theory with many numerical 
simulations of the impact of a compressible liquid cylinder on a rigid boundary (Glenn 
1974; Hwang & Hammitt 1977; Gonor & Yakovlev 1977; Pidsley 1982; Surov & 
Ageev 1989). A local description of the jet impact was given by Frankel (1990) and 
Veklich (1990) for the plane case. The axisymmetric case was analysed by Veklich 
(1991). For an arbitrary cross-section of the jet the present approach seems to be the 
only possible one. In order to make the formulae of the present paper available for 
numerical analysis, they should be improved by a well-known technique (see 
Kantorovich & Krylov 1962), the main idea of which is demonstrated in $4. The 
analysis of the flow and the pressure distribution inside the impacting jet, as well as the 
analysis of the validity of the acoustic theory applied to the jet impact problem is 
currently underway. 
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FIGURE 2. Creation of an acoustic shock, SW, by impact on a liquid half-space. 

2. Formulation of the problem 
Within the framework of the acoustic approximation the flow domain coincides with 

the cylinder (x, y )  E SZ, z 2 0 which is occupied by the liquid at the initial moment, t = 0. 
In non-dimensional variables the liquid flow is described by the velocity potential 
$(x,y, z,  t),  for which the initial boundary-value problem has the form 

I A t  = 5Lz  + 9yy + 9 2 2  ( ( X , Y )  E Q, z > O) ,  
$4 = 1 ( ( X , Y ) E Q ,  z = 01, 
9 = 0 ((x, v) E aQ, z > 01, 
4 = q5t = 0 ( ( X , Y ) € S Z ,  z 3 0, t < 0). 

Once the problem (1) has been solved, the normal derivative a$/& on the free surface, 
which is equal to the normal velocity of the free surface displacement, can be 
calculated, and the position of this surface at moment t can be determined by 
integration in time. The velocity field is given by u = Vq5, u = (u, u, w), and the pressure 

The original problem of jet impact contains the nonlinear equations of motion and 
boundary conditions which must be satisfied on the surface, the position of which is 
unknown in advance. Formally, the solution of (1) provides the asymptotics of the 
exact solution as M +  0 under the assumption that the limiting values of the unknown 
functions and their first derivatives are finite (see Appendix A). 

In order to analyse the pressure field inside the jet, let us first consider the problem 
without the free surface. This limiting problem corresponds to an impact on the 
boundary of the upper half-space z > 0 at a constant velocity (see figure 2). The 
solution of the limiting problem will be denoted by the subscript ‘0’. We obtain 

The notation g ,  = g when g > 0, g ,  = 0 when g d 0 and H(x)  = 1 when x > 0, 
H(x) = 0 when x < 0 are used. Problem (1) is linear, and therefore its solution can be 
presented in the form 

But now cpz = 0 and, hence, qz = 0 at z = 0, so that the functions y ( x , y ,  z,  t )  and 
q(x,y,z, t )  can be continued in the region ( x , y ) ~ S Z , z  < 0 symmetrically: rp(x,y, 
-z ,  t )  = q(x,y ,  z ,  t )  and q(x, y ,  -z, t )  = q(x, y ,  z ,  t).  The boundary-value problem for 
the new unknown function q(x, y ,  z ,  t )  is formulated as 

by? = -A. 

$o(x, y ,  z ,  t )  = - ( t  - z)+, Po(& y ,  z ,  t> = W t  - 4. 

9 = 9O+&,Y,Z, 0, P =Po+q(x,y,z, 0. (2) 

(3) I 4tt = 4m+4yy+4zz ( ( X , Y ) E Q ,  --co < z <+.o>, 
q = -H(tZ-zZ) ((X,y)EaSZ, -Go < z < + co), 
q = qt = 0 ( t  < 0). 
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Problem (3) can be solved by the method of integral transforms with respect to the 
vertical coordinate z and the time t. Thereafter the pressure field will be given by (2). 
Solutions of (3) can be found in explicit forms for both the plane and axisymmetrical 
cases. 

3. Plane problem 
The plane problem (see figure 1 &d) was analysed by Frankel (1990) and Veklich 

(1990). They found both the pressure distribution and the velocity field inside the jet, 
as well as the deformation of the jet free surface. In the present paper a different 
method is used. This method can be applied to the problem of the impact by a jet of 
arbitrary cross-section. 

The unknown function q(x, y ,  z, t )  is independent of y in the plane case. Problem (3) 
takes now the form 

(4) I q t t = q x x + q z 2  (IXl<L - - < z < + + ) ,  

q = -H(t2-z2) (1x1 = 1 ,  - 00 < z < +a), 
q = qt = 0 ( t  < 0). 

The Fourier transform with respect to the vertical coordinate z 

f(x, c, t )  = lPw q(x, z ,  t)e-izcdz, q(x, z, t )  = - ( 5 )  2x T -w 

00 

f(x, 5, t )  eizbdc 

and the Laplace transform with respect to time t 

qL(x, z ,  s) = 

q(x, z ,  0 = - 

q(x, z, t )  ecst dt, Re s > 0, ST 
qL(x, z, s) est ds, a > 0 

2xi J"'iw a-iw 

applied to (4) yield 
(s2+Y2)qLF = q;: (1x1 < 11, 

(1x1 = 1). qLF = -~ 
<2+S2 

2 

Therefore 
2 cosh [(s2 + c2)li2x] 

c2 + s2 cosh [(s2 + <2)1i2] ' 
qLF(x, 6, s) = -~ 

The solution qLF(x,c,s) is an analytic function of the combination s 2 + c 2  and has 
simple poles on the plane of s at the points for which s2+c2 = 0 and 
(s2 + c2)1/2 = i(+x + xk) where k = 0, f 1, f 2, . . . . Hence, in order to invert the Laplace 
transform, it is necessary to calculate the residues of qLF(x, 6, s) at these poles. The 
inversion of the Fourier transform leads to standard integrals and, taking (2)  into 
account, we obtain the pressure distribution within the plane jet z > O,(xI < 1 : 

I 4 
p(x,z, t )  = -S[+nx,;x(t2-z2)1'2] H(t-z), 

x 
W 

S(a,P) = c 2k+l (- 'Ik cos [(2k + 1) a] 4[ (2k+  l)m. 
k=O 

(7) 
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Notice that the pressure between the plate, z = 0, and the shock front, z = t ,  generated 
by the impact does not depend on the variables z ,  t separately but on their combination 
(t2-z2)1/2 (see Veklich 1990). This means that the pressure profile p ( x ,  0, t l )  travels 
along the jet and it is at the distance z = (t2-tq)1/2 from the jet top at the instant 
t ,  t > t,. The formula (7) is very convenient for evaluating global characteristics of the 
jet impact, as well as analysing the peculiarities of the pressure distribution. 

In dimensionless variables the hydrodynamic force on the plate F(t) is 

16 a, J,[(k+0.5)7tt] 
(2k+ 1)Z  . P ( X ,  0, t )  dx = - C 

7c2 k=O 

Let us substitute the integral representation of the Bessel function 

J,(x) = -- cos (XCOS 8) d8 
71: r2 

in (8)  and change the order of the integration with respect to 0 and the summation with 
respect to k. Then we obtain the Fourier series which can be evaluated analytically. The 
result is 

F(t) = - C [( 1 + 2nn) (0, - On+,) - t(sin 8, - sin 0,+J] (9) 
4 AT 

n=O 

where 8, = arccos (2n/t), = 0, N = [it]. 
Formula (9) presents the hydrodynamic force in the spirit of Frankel. Moreover, the 
same procedure applied to (7) gives the representation for the pressure distribution 
found by Frankel (1990) and Veklich (1990). In particular, 

4 
F(t) = 2--t  (0 < t < 2),  

7t 

4 K + l  2 8  
F(t) = 2--t-8--ar~cos-+-(t~-4)~/~ ( 2  < t < 4). 

7t 7t t 7 t  

The sum in (8) was numerically evaluated: 1000 terms were taken in the sum to 
guarantee accuracy of the result not lower than lop4. A graph of the force (8),  figure 
3, shows that a jet impact is not connected with large hydrodynamic loads only. The 
reason is that not only compression waves but also relief waves are formed under the 
impact. The latter result from the presence of the free surface of the jet and they move 
from the periphery of the contact region to its centre. The pressure drops in the region 
of the interaction of the relief waves, which leads to negative values of the 
hydrodynamic force F(t). If the connection forces between the liquid particles and the 
rigid boundary are small enough, this phenomenon may lead to the separation of the 
liquid from the impacted surface with the appearance of cavities attached to the 
surface. Then the pressure increases again, which leads to a collapse of the bubbles with 
the formation of new compression waves. This suggests that the jet impact is not a 
simple phenomenon and that it may be governed by factors disregarded by classical 
hydrodynamics. The complicated character of the force evolution can be utilized to 
explain why the damage produced by the impact of a liquid drop or a pulsating jet may 
be much greater than that due to steady jet impact. Equation (8)  shows that 
F(t) = O(t-''') as t + 00. This means that the influence of acoustic effects on the flow 
decays quite slowly with time. 

The work done by the hydrodynamic force is equal to the energy lost by the plate. 
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FIGURE 3. Hydrodynamic force F(t) on a plate impacted by a plane jet. 

The energy to be transferred to the plate to support the constant value of its velocity 
will be referred to as the external energy, E,(t). The work done during a small time 
interval At is equal to F(t)At in dimensionless variables. Therefore 

The limiting value of E,(t) as t + 00 is referred to as the total impulse, Z. Taking into 
account (8) and the standard integral 

we get 

1:4(cx)dx = -, 1 c > 0, 
C 

where c(x) is the Riemann Zeta function. This quantity agrees with that given by 
Frankel (1990). In dimensionless variables the internal energy of compressed liquid 
Ei(t) is 

Ei(t) = 1 [pZ(x, Z, t )  dzdx, 
2 -1 0 

the scale of the energy being pV2R2. Inserting (7) in (13), we obtain 

E,(t) = - c J~[ (k+0 .5 )x ( t2 - z2 )1 /2 ]dz .  
n2 k=o (2k+ 

Using the equality (see Appendix B) 

ft 1 n t c  
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we get the final formula 

8 m 1 (2k+l)rrt  

Jo(7) d7. (15) 
(2k+ do Ed0 = 2 c 

k=O 

Taking the limit as t+ GO and taking into account (1 1) and (12), we can write that 

Ei( GO) = iEe( GO). (16) 

This shows that a quarter of the external energy is transferred to the internal energy 
of the compressed liquid, however small the impact velocity may be. This result is non- 
trivial because usually one connects a low-speed impact with an incompressible liquid 
model only, wherein this part of the energy is referred to as 'lost energy'. 

The pressure distribution inside the plane jet can be analysed using the representation 
(7). However, the convergence of the series in (7) is quite weak. It can be improved by 
extracting the main part S,(a,P) of the series S(a,P), but it is better to use the 
approach suggested by Frankel (1990) and Veklich (1990). Nevertheless, the function 

can be useful to study the asymptotic behaviour of the pressure as P-+ co, based on the 
estimate 

which is valid as p + GO . 
The function S,(a,P) can be presented in quadratures. Analysis of the integral 

representation demonstrates that the pressure p(x ,  z ,  t )  is finite everywhere inside the 
jet, and the pressure gradient is unbounded near the curves z2 + (1 + ~ N + x ' ) ~  = t2 
where N = 0,1,2, . . . . In particular, narrow zones of high pressure gradients appear 
periodically at the centre of the contact region at the time instants t ,  = 1 +2N. For 
more details of the pressure distribution see Frankel (1990) and Veklich (1990). 

S(a, P) = S,(a, P) + 0(g3'/") 

4. Axisymmetric problem 
Axisymmetric jet impact was first analysed by Veklich (1991). Here the approach 

suggested in the previous section is used. In the polar coordinate system r , 6 ,  
r = (x2 +y2)ll2 (figure 4), the function q(x, y ,  z ,  t )  is independent of 6 and satisfies 

1 q = -H(t2-z2) ( r  = 1, -GO < z < +GO), 

q = qt = 0 ( t  < 0). I 
The Fourier transform with respect to z and the Laplace transform with respect to time 
t ,  applied to (17), yield 
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FIGURE 4. Impact of a plate on a liquid circular cylinder. (a) The side view of the wave pattern at the 
initial stage of the impact (axisymmetric case): SW, shock wave; RW, relief wave; r,  radial 
coordinate. (b) The bottom view: CL, contact line between the liquid free surface and the plate; relief 
wave, RW, converges to the centre point. 

The solution of this boundary-value problem, bounded at the jet centre, r = 0, is 

where Io(r) is the modified Bessel function of zero order. It is seen that qLF(x, 5, s) is the 
analytic function of the combination s2 + c2 and has simple poles on the s-plane at the 
points where s2 + c2 = 0 and (s2 + C2)lI2 = ipk, k = 1,2, . . . , ,uk being the roots of the 
equation J,,(p) = 0 and p1 < ,u2 < . .. < pn < . .. . That is why we need only to 
determine the residues of qLF(r, Q s) at these poles, to inverse the Laplace transform. 
We obtain 

where z > 0, 0 < r < 1, 4(r) ,  J,(r) are the Bessel functions of the zero and first orders, 
respectively. It is seen that in the axisymmetrical case the pressure also depends on the 
combination ( t ' - ~ ~ ) l / ~ .  This means that to find the pressure distribution inside the jet, 
one needs to determine the pressure p(r,O, t )  on the plate only. Formula (19) was 
derived by Veklich (1991) by a different method. 

In dimensionless variables the hydrodynamic force F(t) on the plate is equal to 

rp(r, z ,  t )  dr = 471 C -. 4(Pk t> 
k=l 

In order to derive (20), the standard integral 
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FIGURE 5. Hydrodynamic force F(t) on a plate impacted by an axisymmetrical jet. 

was used. The graph of the force (20) is shown in figure 5.  The main features of the 
force evolution shown for the plane jet impact are valid in the axisymmetrical case as 
well. However, now the change of the force with time is more abrupt. This is connected 
with the fact that the interaction of the torus-like rarefaction waves and that of the 
torus-like compression waves formed under an axisymmetric jet impact yield a greater 
amplitude of pressure variation than in the plane-jet impact. 

The total impulse I for the axisymmetrical jet impact is 

where (1 1) was used. Numerical calculations give I = 1.016355. 
The non-dimensional internal energy E,(t) is given in this case by 

E,(t) = 7c rp2(r, z ,  t) dz dr. 

Inserting (19) into (21) and taking into account (14) and 

1: 1: 

(Gradshteyn & Ryzhik 1980), we find 

a, t p k  

E,(t) = n 1 p 4(7)d7 
k = l p k  0 

This means that relation (16) is also valid in the axisymmetrical case. 
However, the pressure distribution is more complicated than that in the plane 

problem. In the axisymmetrical case both compression and rarefaction waves are 
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torus-like; therefore when they interact extremely low or high values of the pressure 
may be expected. Let us consider the pressure evolution at the centre of the contact 
region, r = 0, z = 0, t > 0: 

'&(pk t, 
W 

p(o,o,  t )  = Dk(t), Dk(t) = 
k = l  p k  A(pk) * 

This series may converge only conventionally because Dk(t) = O(k-') as k+ co. 
Moreover, it is possible that p(0,  0, t )  is unbounded at some instants of time. In order 
to clarify the characteristics of the pressure at the centre point, we need to determine 
the asymptotic behaviour of the summands Dk(t) as k- t  co. Taking into account 

c o ~ ( p ~ t - + ~ ) + O ( k - ~ ' ~ ) ,  pk=(k-;)n+O(k-'), '&(pkt)=--- 
(pk t)'/2 

1 

which are uniformly valid where k $ 1, t > 0, we obtain the asymptotic formula 

Dk(t) = Df'(t) +Df'(t), 

2 (-1)k-1 
Df'(t) = ~ ~ cos[knt-+n(t+ l)], Df ' ( t )  = O(k-'). 

nt'/' k 

Therefore, p(0,  0, t )  = p(")(t)  +p(')(t) where 

a, W 

p'"(t) = Df'( t ) ,  p"'(t) = 2 Df'( t ) .  
k = l  k= l  

The second sum converges absolutely, hencep(l'(t) is a bounded function and it can be 
evaluated numerically. The first sum converges conventionally, but it can be evaluated 
analytically. This simple idea makes it possible not only to analyse the characteristics 
of the pressure distribution, but also to evaluate the pressure numerically in an effective 
way. We obtain 

2 
p(O,O, t )  = -[ln[2cos(~n(t-2N))]cos($7~(t+ l))+$t(t---2N)sin(;n(t+ l))]+p(')(t), 

nt1/2 

where the integer N is such that It-2M < 1. Analysis of the wave front kinematics 
shows that expansion waves converge to the jet centre at the instants of time t = 4n + 1, 
n = 0,1, . . . and compression waves converge at t = 4n + 3. Calculating p(")(t)  at these 
instants, we conclude that while the expansion waves are interacting the pressure can 
be quite low but finite, whereas the interaction of the compression waves leads to the 
logarithmic growth of the pressure amplitude. 

The liquid flow and the pressure distribution inside the circular jet were numerically 
determined by Veklich (1991) with the help of (19). Unfortunately, Veklich does not 
report any details of the numerical procedure. In particular, the accuracy of the 
numerical results is not clear. The numerical results show strange behaviour of the 
relief and compression waves inside the circular jet. For example, a relief wave can 
reflect from the jet axis as either a relief wave or a compression one. Physically, this 
phenomenon is obscure. We expect that the analysis of the dynamics of waves inside a 
circular jet by the geometric acoustic approach in the spirit of Lesser (1981) will be able 
to clarify this point. 
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5. General case 

and the eigenvalues A,, which satisfy the equations 
For an arbitrary region 52 (figure 6) ,  we can introduce the eigenfunctions Ak(x ,y )  

and the orthogonality condition 

where = 1 when n = k and a,, = 0 when n + k .  Generally speaking, there can be 
some eigenfunctions Aki (x, y), j = 1,2, . . . , Nk which correspond to the same eigenvalue 
A,. For simplicity, we shall consider only the case Nk = 1. 

Let us denote 

ck = lQ y )  dx dy, 

then the pressure distribution in the jet can be proved to be given by 

(24) 

It is easy to see that this function satisfies the wave equation and the boundary 
condition on the free surface of the jet. Therefore, we need to prove only that 

k=O 

lim P& y, 2,t) = - ' (0  ((x, y )  E 521, 
z++o 

where 8(t) is the Dirac delta function. Inserting (24) in this condition, then multiplying 
by A,(x ,y )  and integrating over 52 both its sides, and using (23), we find 

d 
c, lim - [ [J , [h , ( t2-z2)1 /2]H(t -~) ]  = -8(t)c,. 

z++o dz 
Here 

d 
dz 
- [J , [h , (P-Z2)1/2]  H(t-z)]  

Z 
- - ,/2Jl[hn(t2-z22)1/2] H(t-z)-J,[hn(t2-z2)1/2] f q t -2 )  

hn(t2-Z ) 

and one can see that the first term vanishes as z + + 0 and the second one tends to 
- 8(t). This reasoning proves the representation (24). 

In the non-dimensional variables the hydrodynamic force on the plate F(t) is 
W 

F(t> = p(x, y ,  O ,  t, dx dy = 2 c; t )  s, k=O 

and the total impulse I is given by 

I =  JOaF(t)dr = C - c; 
k=O h k 
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Rigid plate 

FIGURE 6. Impact of a plate on a liquid cylinder of arbitrary cross-section. (a) General view at the 
initial moment. (b) The bottom view: CL, contact line between the liquid free surface and the plate. 

The internal energy of compressed liquid E,(t) is determined in non-dimensional 

(25) 

variables by 

Ei(0 = ; [ [ i , P Y X .  Y ,  z, 0 dx dY dz. I 
Inserting (24) into (25) and taking into account (23) and (14), we obtain 

and, hence, (16) is valid for a jet of arbitrary cross-section as well. 
In the plane case, we have 

4 (- 1 ) k  
Ak(x)  = cos ((2k + 1 )  in.), ck = - - 

n: 2 k + l ’  
hk = in:(2k+ I), 

and (24) leads to (7). Accordingly, in the axisymmetrical case, we have 

and (24) leads to (19). 

6. Jet impact onto a permeable surface 
This problem is relevant to jet printer performance. In particular, the liquid mass 

which can penetrate a paper surface under jet impact can be of practical interest. The 
simplest model is considered here. Within the framework of this model the velocity of 
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the liquid penetrating the surface is taken to be proportional to the local hydrodynamic 
pressure. The liquid flow is governed by equations (1) where the condition on the 
surface, z = 0, (x ,  y )  E Q, has to be replaced by 

q& = 1 -ap. 

Here a is a positive coefficient dependent of the surface properties, 0 < a < 1. 
The pressure will be sought in the form of the Fourier series 

m 

p(x,  y ,  z ,  t, = c Mk(t ,  z ,  Y) 
k=O 

where the coefficients Mk(t ,  z )  satisfy 

a k f k  aMk 
-- a- = -s(t)Ck ( z  = O), 

at 

Using the Laplace transform, one obtains 

and 

G(z, a) = cos z + a J,[( 1 - a2)%] sin ( z  - u) du. s: 
Notice that G(z, a) + 0 as z --f 00 and 0 < a < 1 .  The asymptotics of G(z, a )  as a + 0 is 
non-uniform; nevertheless we can write that 

1 
-Mk(t, 0)-4(hk t )  = O(a). 
‘ k  

The hydrodynamic force on the impacted plate is given by 

00 

F(t, = c M k ( t ,  O) ck 
k=O 

and it vanishes as O(t-l/’) for t --f 00. It is observed that 

F(0, a) = (1 -5) 1 -a2 F(0,O). 

Thus, F(0,a) > 0 for 0 -= a < $(d5- 1). In the time interval 0 6 t 6 2, we find in the 
plane case that 
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Physically, it foliows that the force decreases in time at the initial stage. This leads to 
the restriction 0 < a < a1 where a1 is the solution of 

(1 - a y  - (1 - a3312 arctan - 
a1 a1 

The mass of liquid m(t, a) which has penetrated the surface up to time t is determined 
in non-dimensional variables by 

m(t, a) = [ (Ia ap(x, y ,  0,7) dx dy d7 = a F(7, a) dr. 1 . L  
The integrals 

exist and, therefore, 

This means that 
m(G0, a) = aZ(o0, O ) ,  

i.e. the total liquid mass which will be absorbed in the permeable body after the jet 
impact is proportional to the total impulse determined for a rigid surface. 

7. Impact of a finite liquid cylinder 
For a finite liquid cylinder (figure 7) of length H in non-dimensional variables, 

representation (26) remains valid. The coefficients Mk(t,  z) now satisfy the equations 

Mk=O ( z = H ) ,  

-- aMk - -8(t) Ck (z = 0). 
a Z  

Using the Laplace transform, we find 

sinh [(s' + Ai)'/'(H- z)] 

(s2 + cosh [(s2 + A3'/'H] ck' 
M,L(s,z) = 

In particular, 
tanh A, H 1: Mk(7, 0) dr = ' k ,  

' k  

and the total impulse Z for the finite jet is 

k=O Ak 

It is clear that Z(H) < Z(c0) and 
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FIGURE 7. Impact by a finite liquid cylinder (a plane case is shown). (a) The wave pattern at the initial 
stage when the presence of the upper free surface does not affect the flow: FS, free surface; SW, shock 
wave; RW, relief wave; RP, rigid plate; H ,  length of the cylinder. (b) Reflection of the shock wave 
at the upper free surface of the cylinder: REW, reflected expansion wave; EW, edge wave; CW, 
compression wave. 

where A, is the minimal eigenvalue. Therefore, in the case 
H>A;lln(;--l) 112 

one can take Z(H) M Z(co) with relative error E .  For E = 0.01 we find H > 1.7 in the 
plane case and H 2 1.1 in the axisymmetrical one. 

This problem has been the subject of intensive numerical studies (see Glenn 1974; 
Huang, Hammitt & Yang 1973; Hwang & Hammitt 1977; Gonor & Yakovlev 1977; 
Surov & Ageev 1989) in connection with the erosion of rigid surfaces by drop impact. 
The erosion is a complex phenomenon which essentially depends on the geometries of 
both the liquid drop and the impacted boundary. Impact by a circular liquid cylinder 
onto a undeformable plate is a particular case of the general problem, which is quite 
suitable for numerical analysis. Nevertheless, the numerical simulation of the liquid 
cylinder impact is non-trivial, mainly owing to the complex pattern of the flow. The 
numerical results agree very well with experimental data but imperfectly with the 
theoretical predictions (see, for example, the discussion by F. J. Heymann following 
the paper by Huang et al. 1973). The careful analysis of the problem within the 
framework of the acoustic approximation is expected to give the information on the 
characteristics of the flow which will be helpful for construction of adequate numerical 
schemes. 

Impact by a finite liquid cylinder in both the plane and axisymmetric cases was 
studied by Veklich (1990, 1991) within the framework of the acoustic approximation. 
Numerical results were presented for the hydrodynamic force on the impacted rigid 
surface. Attention was focused on the compression of a liquid drop between two 
parallel plates. 
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8. Conclusion 
It is shown in this paper that the pressure distribution inside a jet which hits a rigid 

plate can be found in the form of Fourier series and has a special structure. 
Convergence of the series is not good enough for direct numerical calculations, and so 
a careful analysis of the series is required. On the other hand, global characteristics 
(hydrodynamic force, total impulse, internal energy) can be obtained quite easily for 
arbitrary cross-section of the jet. It was shown that a quarter of the impact energy is 
transferred into the internal energy of the compressed liquid. The pressure inside the 
jet, as well as the total hydrodynamic force, may be negative. This indicates the 
possibility of cavitation under the impact. Cavitation depends on the liquid properties, 
and the present case is ideal because it was assumed that the liquid cannot disintegrate 
or separate from the impacted surface (interface cavitation), however low the 
hydrodynamic pressure may be. 

The permeability of the impacted surface affects the evolution of the jet impact. 
However, the total liquid mass that penetrates the surface may be obtained using (27) 
and is proportional to the total impulse determined for the rigid surface. 

The dependence of the total impulse on the jet length may be disregarded if the 
length is greater than the diameter of the jet cross-section. 

The acoustic approximation is quite rough for presenting a complete picture of the 
jet impact. Nevertheless, we expect that the values of global characteristics which are 
connected with average quantities but not with local ones are satisfactorily predicted 
by the acoustic approach. 

The author would like to express his thanks to Professor V. M. Teshukov for helpful 
discussions. Preliminary results of this work were announced at the IUTAM 
Symposium on Bubble Dynamics and Interface Phenomena, Birmingham, England, 
September, 1993. 

Appendix A. Justification of the acoustic approximation 
The problem of plane jet impact is considered. It is not difficult to extend the analysis 

presented to the impact of a jet of an arbitrary cross-section. We shall describe general 
features of the flow inside the jet and justify the acoustic approximation for impact 
velocities which are well below the sound speed at the resting liquid. Dimensional 
variables are used below. 

We assume that the fluid of the jet is non-viscous, perfect and does not conduct heat 
(see Timman 1960). This means that the equation of state is 

P = 9Tp, (A 1) 

T d S =  de+Pd(l/p), (A 2) 

the entropy S is defined by the differential relation 

and the specific internal energy e by 

e = c, T. 

Here P is the pressure, p is the density, T is the temperature, the constants 9 and c, 
are dependent on the fluid properties. Equations (A 1)-(A 3) yield 
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FIGURE 8. The wave pattern at the initial stage of the jet impact (nonlinear theory, plane case) : AA‘, 
undeformable part of the shock front; A B  and A’B,  curved parts of the shock; A N  and A”‘, fronts 
of the relief waves; BC and B C ‘ ,  disturbed parts of  the jet free surface; V, jet speed. The liquid is 
at rest in region ANN’A’, the flows inside regions ABCN and A’N’C’B are self-similar at the stage 
shown. 

where A(S) = 9 exp [(S- S,)/cv], S, is constant, y = 1 + 9 / c V ,  and the local sound 
velocity in the flow is given by 

The constant S,  can be taken without loss of generality to be zero. 
Initially the liquid is at rest and occupies the region 1x1 < L, z > 0. The liquid density 

is po and the sound velocity is co. The initial pressure Po is given by (A 6) : Po = po c i / y ,  
the initial value of the specific internal energy e, by (A 5 )  : e, = c t / [y (y  - l)], the initial 
entropy So by (A 4). 

At t = 0 the liquid particles instantly obtain the velocity which is directed down to 
the rigid boundary and is equal to V. A sketch of the flow at the initial stage is shown 
in figure 8. The central part of the shock front AA’ is plane, its dimension thus vanishes 
with time. Parts AB and A’B’ of the shock are curved owing to the interaction of the 
shock wave with the relief waves which move from the free surface of the jet, BC and 
B’C‘, to its centre. At the stage under consideration the disturbed flow may be divided 
into the three regions : 1, 2, 2’. The flow inside region 1 is not affected by the presence 
of the liquid free surface and, therefore, is the same as that under the impact of the 
liquid half-plane. Region 1 is bounded below by the rigid wall, z = 0, where the normal 
velocity of the liquid is zero, and above by the plane part of the shock front AA’, where 

(A 7) 

(A 8) 

c = (yP/p)? (A 6) 

P1 J = PO(J+ v, 
Pl+pl J 2  = Po+p,(J+ V)’, 

quantities in this region are denoted by the subscript ‘ 1 ’, J i s  the normal velocity of the 
shock front. Region 1 is also bounded by the fronts of the relief waves A N  and A”’. 
The liquid in region 1 is at rest: all hydrodynamic and thermodynamic quantities are 
constant here and can be found with the help of (A 4)-(A 9). They are 
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where M = V/co is the Mach number, R is the solution of the quadratic equation 

[2+M2(y- 1)]R2-[4+M2(y+ l)] R+2  = 0, 

which tends to unity as M+ 0, and A is usually referred to as the strength of the shock. 
When the jet speed is much smaller than the sound velocity, M 4  1, the following 
asymptotic relations can be found : 

J =  c,(1+:(y-3)M+O(M2)), c1 = c , ( ~ + ~ ( ~ - ~ ) M + O ( M ~ ) ) ,  (A 10) 1 R = i + ~ - : ( y - 3 ) ~ 2 + 0 ( ~ 3 ) ,  A = M + : ( ~ + ~ ) M ~ + o ( M ~ ) ,  

el = e,( 1 + (y  - 1) M +  O(M2)),  S, - S o  = O(M3). 

Shock waves with strength much less than unity (in our case, A = O(M)) are referred 
to as weak shock waves. For an arbitrary weak shock, A -+ 1, equations (A 4), (A 9) 
give 

The flow behind a shock cannot be isentropic, but for weak shocks the flow may be 
considered as approximately isentropic in view of the estimate (A 11). The value of A 
can be estimated as O ( M )  because the strength of the shock on BA and P A ‘  may be 
less than on AA’ but not greater. 

The fronts AN and A”’ of the relief waves are lines of weak discontinuities of the 
flow parameters. This means that the pressure and the liquid velocity are continuous 
near these lines, while some of their derivatives are not. The normal velocity of these 
lines is equal to the local sound velocity which is c,. The relief waves appear at the 
moment of impact on the periphery of the contact region. Hence, the line AN is a 
circular arc with radius c1 t and centre at the point x = L, z = 0, and the line A”’ is 
a circular arc with the same radius and centre at the point x = -L , z  = 0. The 
coordinates xA, zA of point A satisfy the equations 

zA = Jt ,  ( x ~ - L ) ~ + z ~  = c ; tz  

which predict x A  = L-(c;- J2) l j2  t .  

Points A and A’ move to the centre of the jet at the constant speed (c: - J2)1/2. Taking 
(A 10) into account, we obtain for the weak shock 

(c; - J2)”2 = c0 M1”[(y + 1)/2]’” + O(C, M3/2 ) .  

Thus, both the parameters of the liquid state in region 1 and the geometry of the region 
can be determined for arbitrary jet speed and arbitrary jet cross-section. Region 1 
disappears at t ,  = L/(c; - JZ)l/’. 

Within the framework of the acoustic approximation the velocities of the shock front 
and relief waves are equal to the sound velocity at the resting liquid co that corresponds 
to the leading-order terms in (A 10). Therefore in this approximation the curved parts 
of the shock front, AB and A’B’, are absent. This approximation is unable to describe 
the appearance of the curved parts of the shock front and the fine structure of the flow 
near them. This is well-known; it indicates that the acoustic approximation is not valid 
near points where the shock touches the free surface. But the dimensions of these areas 
are small and tend to zero as M -to. Indeed, at the initial time interval considered in 
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the acoustic approximation we have tc,/L = O(1), therefore the relative size of the 
curved shock part is (L-x,)/L = ( tc , /L)[(y+ 1)/2]1/2M1/2+. . . = O(M1I2) and van- 
ishes as M+ 0. Thus the presence of points A and A’ is connected with the nonlinear 
effects which are localized near points B and B’. The horizontal size of the areas is of 
O(M1l2) and their vertical size is of O ( M )  as M+O. Inside these areas the acoustic 
theory has to be improved, which can be achieved by asymptotic methods. This 
problem is not considered here. 

In the plane problem the liquid flow and the pressure distribution in region 2 are self- 
similar and depend on the variables (x-L)/(c , t ) ,  z/(cot) .  This means, in particular, that 
the shape of the free surface BC is given by x = L+ VtC(z/c,t) where the function 
5 = <(g), 6 = z/c,t should be determined for 0 d 6 < ug/co, ug = dz,(t)/dt, 
C(uB/co) = 0. Therefore, there is no initial asymptotics of the solution in time in 
contrast to the impact problem studied by King & Needham (1994). 

At t ,  = L/c l  the relief waves (AN and A”’) reach the jet centre and their interaction 
starts. This interaction leads to a pressure drop and to a decrease of the speed of the 
relief fronts. Now different parts of the relief fronts propagate at different speeds 
which, moreover, are varied in time. L,ater, the relief waves reach the opposite parts of 
the jet free surface and are reflected back into the jet as compression waves. This 
process will then be repeated many times, and so the intensities of the relief and 
compression waves vanish in time. We expect that such processes will not put any new 
limitations of the applicability of the acoustic approach. 

Crocco’ vorticity law shows that the curved parts of a shock are responsible for the 
generation of vorticity behind the shock front. The vorticity o is defined here as 
w = au/az-au/ax, where u, u are the horizontal and vertical components of the liquid 
velocity, respectively. A general expression for the vorticity jump on an unsteady shock 
front was given by Piskareva & Shugaev (1977). In our case their results yield 

where o, is the vorticity on the rear side of the shock, pz is the liquid density behind 
the shock front, D, is the speed of the shock front with respect to the fluid ahead of 
it, and a/as is the derivative along the front. For a stationary shock (A 12) is the same 
as the relation found by Truesdell (1952). Taking into account the conditions at the 
shock front, we can rewrite (A 12) in the form 

where S = S(s, t )  is the shock strength on the curved parts AB and A’B’. We assume that 
S(s, t )  decreases monotonically from d at point A to S,, 0 < Sf d A ,  at point B. The 
exact value of 8, is not necessary to obtain an estimation of o, as M+O. Near point 
B, the flow is of Prandtl-Meyer type and, therefore, high gradients of both the pressure 
and the velocity are expected here. We get 6 = O(d) = O(M),  s = O(M1/’L), and 
aS/as = O(M1I2/L). This predicts that o, = O(M3/2V/L)  as M+O. Thus, the flow 
behind the shock generated under the jet impact may be approximately considered as 
isentropic and irrotational when M 4 1. A weak vortex wake is localized near the free 
surface of the jet, its intensity being of O(M3” V / L )  as M - t  0. Generally speaking, this 
analysis is not complete because vorticity may be generated not only by curved shocks, 
but by the relief waves as well. This follows from the theory of weak discontinuities. 
We do not know any results in this field, and this problem is not considered here. 
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Within the framework of the acoustic approximation the equations of motion and 
the boundary conditions are linear. In order to justify that at the stage under 
consideration the equations can be linearized, consider the Euler equations of an 
isentropic flow 

1 

P 
u,+M(u.V)u = - - v p ,  

and the equation of state 
p = ( 1  +Myp)"' 

which follows from (A 4). The equations are written in the non-dimensional variables 
which were introduced in 0 1 .  Here u = (u/ V, v/ V )  is the vector of the liquid velocity, 
and p = (P-po)/(poco V )  is the deviation of the pressure from its initial value. The 
assumption which leads to the acoustic approximation may be formulated as follows: 
the unknown functionsp, u and their first derivatives remain bounded as M+ 0 almost 
everywhere in the flow region. This assumption allows us to neglect the nonlinear terms 
in (A 14), (A 15)  and to change (A 16) for p = 1 +Mp+. . . in the leading order. The 
words 'almost everywhere' are very important: they point out that the acoustic theory 
is expected to be valid everywhere in the flow region except for some zones, the 
dimensions of which are small and tend to zero as M+O. One of these zones was 
distinguished above: the vicinity of the point (in the three-dimensional problem of the 
line) where the shock front touches the jet free surface. 

In order to find the liquid flow within the framework of the acoustic approximation, 
the deformation of the jet free surface is disregarded. We assume that the velocity 
of the liquid cannot be much higher than the impact speed V. Then the normal 
velocity of the free surface is of O(V),  and its deformation is of O(Vt). Therefore, 
the surface deformation is much less than the dimension of the jet cross-section. 
Indeed, O( Vt/L) = O((tc,/L) (V/c , ) )  = O(M)  because tco/L = O( 1 )  at the stage 
under consideration. 

It follows from physical reasoning that the acoustic approach fails : (i) near the fronts 
of the relief waves and the compression waves where the normal derivatives of the 
pressure and the liquid velocity change abruptly in the general case; (ii) near the 
contact line of the free surface with the rigid boundary, where the horizontal 
component of the velocity is expected to be much higher than that inside the jet. The 
flow structure inside each of these zones is more complex than that predicted by the 
acoustic theory. A powerful tool providing a complete description of the flow is given 
by the asymptotic methods. The main idea of the methods is based on the assumption 
that the flows inside the narrow zones depend on the flow inside the jet (where the 
acoustic approximation is valid), but the inverse influence is weak and can be 
approximately disregarded. Preliminary analysis indicates that the flow near the curved 
parts of the shock front is governed by transonic theory, and near the fronts of weak 
discontinuities (fronts of the relief and compression waves) by nonlinear geometric 
acoustic theory. It is expected that the acoustic effects may be disregarded near the 
contact line and an analysis similar to that given by King & Needham (1994) can be 
used to improve the flow description here. 

The study of the fine structure of the flow inside the jet is very important because it 
gives us an understanding of the processes occurring under the impact. On the other 
hand, we expect that details of the flow in the above narrow zones make small 
contributions to the global characteristics. For example, the analysis of the flow near 
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the contact line can give us an estimate of the length of the spray jet and helpful details 
of the liquid motion. But the pressure inside this vicinity is near atmospheric, pa, (see 
Frankel 1990) and it is hard to believe that the details of the pressure distribution in 
the spray jet will make a significant contribution to the hydrodynamic force on the 
impacted surface. 

Appendix B. Equation (14) 
We use the standard integral (Gradshteyn & Ryzhik 1980) 

1;” 4(2z cos x) dx = in J:(z) 

with the help of which the left-hand side of (14) can be rewritten as 

1: J;[c(t2 - z ~ ) ~ / ~ ]  dz = - 5 1; 1: J,[2c(t2 - z2)l/’ cos x] dz dx. 

Let 2ctcosx = b and introduce the new integration variable zb/t = u. Then the inner 
integral is 

5 1 J,[(b2 - u2)1/2] du. 

Here 1: J ,  [(b2 - u2)1/2] du = sin b 

(see Gradshteyn & Ryzhik 1980). Therefore 

I2 sin (2ct cos x) dx [ J;[c(t2 - z ~ ) ~ / ~ ]  dz = - 
nC i: cosx 

The final substitution cosx = v gives 

l 2  sin (2ct cos x) dx J: cosx 

Let us now transform the right-hand side of (14) using the integral representation of 
the Bessel function of zero order 

We obtain 

this finishes the proof of (14). 
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